
A Suite of Metrics for Calculating the Most
Significant Security Relevant Software Flaw Types

Peter Mell
National Institute

of Standards and Technology
Gaithersburg MD, USA

peter.mell@nist.gov

Assane Gueye
University Alioune Diop, Bambey-Senegal

Prometheus Computing, LLC
Bambey, Senegal

a.gueye@prometheuscomputing.com

Abstract—The Common Weakness Enumeration (CWE) is a
prominent list of software weakness types. This list is used by
vulnerability databases to describe the underlying security flaws
within analyzed vulnerabilities. This linkage opens the possibility
of using the analysis of software vulnerabilities to identify the
most significant weaknesses that enable those vulnerabilities.
We accomplish this through creating mashup views combining
CWE weakness taxonomies with vulnerability analysis data.
The resulting graphs have CWEs as nodes, edges derived from
multiple CWE taxonomies, and nodes adorned with vulnerability
analysis information (propagated from children to parents). Using
these graphs, we develop a suite of metrics to identify the most
significant weakness types (using the perspectives of frequency,
impact, exploitability, and overall severity).

Index Terms—Metrics, Software flaws, Vulnerabilities

I. INTRODUCTION

The Common Weakness Enumeration (CWE) [1] [2] is a
prominent list of software weakness types. It is maintained by
the MITRE corporation, funded by the United States (U.S.)
government, and developed with the participation of 55 orga-
nizations. The CWE list contains 808 weaknesses organized
by multiple views. Views are ‘hierarchical representations’ of
CWEs (i.e., taxonomies) serving different communities with
different perspectives on the data.

A specific view, 1003, was created to support the labelling
of publicly disclosed software vulnerabilities (‘potential weak-
nesses within sources that handle public, third-party vulner-
ability information’). It contains 123 software flaws. The
National Vulnerability Database (NVD) [3] and other vulner-
ability databases and security tools use view 1003 to describe
the underlying security flaws within analyzed vulnerabilities.
98.8 % of the 12 760 fully analyzed vulnerabilities published
by NVD in 2019 were able to be mapped to view 1003,
demonstrating its applicability and coverage.

This linkage of vulnerability analysis to the view 1003
CWEs opens the possibility of using the NVD analysis of soft-
ware vulnerabilities to identify the most significant weaknesses
that enable those vulnerabilities. In this work, we accomplish
this through creating mashup views combining the following
resources:

• the multiple primary taxonomies of the CWE (views
1003, 1000, 699, and 1008),

• the Common Vulnerabilities and Exposures (CVE) [4]
enumeration of publicly disclosed software vulnerabili-
ties,

• the NVD mapping of CVEs to view 1003 CWEs, and
• the NVD measurements of each CVE using the Common

Vulnerability Scoring System (CVSS) [5] [6]. This cal-
culates the exploitability, impact, and overall severity of
each CVE outside of any particular deployment context.

The result of creating mashups of this data are graphs
that have CWEs as nodes. The edges between the nodes
are extracted from the parent-child relationships between the
multiple CWE taxonomies. And the nodes are labelled with
CVE and CVSS information (propagated backwards along the
edges). We apply to these graphs a suite of simple metrics that
we developed to identify the most ‘significant’ weakness types.
We evaluate significance from multiple perspectives using
metrics focused on the following areas: frequency, impact,
and exploitability. In doing this we evaluate the CWEs in
two distinct groups to take into account the varying levels
of abstraction of the CWEs.

We create most significant weakness lists for each metric
for the CVE vulnerabilities published in 2019 (not provided
due to space limitations). We then analyze the differences
between these six lists (3 metrics * 2 sets of CWE types) using
two algorithms for comparing differences between ordered
lists (Kendall’s Tau and the Spearman’s footrule variant [7]).
We find that different weaknesses tend to emerge as the
most significant depending upon the perspective, the metric
used, and the CWE type. Note that we use simple low level
metrics for our perspectives. This is because there is no ground
truth for aggregating those metrics; equations in security that
aggregate simple metrics are often practically useful but less
scientifically defensible.

Finally, we note that the CWE already has an official
metric to identify the ‘most dangerous’ CWEs. It aggregates
both frequency and severity with severity itself being an
aggregate metric combining exploitability and impact. We
discover weaknesses with this official metric that leads to the
under counting of certain CWEs.

We recommend that software developers and creators of
software bug finding tools use our approach to prioritize
finding and eliminating these most significant weaknesses to



reduce the number and severity of security related flaws in
software.

II. BACKGROUND

As mashup research, our approach combines multiple re-
sources. These are briefly described and referenced here.

A. Common Weakness Enumeration

Our research is primarily focused on the Common Weak-
ness Enumeration (CWE) [8], a ‘community-developed list
of common software security weaknesses’. ‘It serves as a
common language, a measuring stick for software security
tools, and as a baseline for weakness identification, mitigation,
and prevention efforts’ [9]. The 808 software weaknesses
within the enumeration are referred to as CWEs where each
is named CWE-X with X being some integer. Each CWE is
characterized as either a class, base, variant, or compound.
Classes are the highest level of abstraction, followed by bases,
and then by variants. Compounds are relatively rare and
are combinations of multiple bases and/or variants. In our
work we evaluate classes separately from bases, variants, and
compounds, given that the classes have a much higher level
of abstraction.

Besides the CWE weaknesses, there are also 295 categories
and 38 views. Confusingly, these are also considered CWEs;
for simplification we use the name CWE to refer only to
the weakness CWEs. The categories are used to organize the
CWEs within select views (this is not used in our research).
The views are hierarchical organizations of a subset of CWEs
according to some perspective (essentially a taxonomy). The
three primary taxonomies are the ‘Research Concepts’ (view
1000), ‘Development Concepts’ (view 699), and ‘Architectural
Concepts’ (view 1008). This last view, 1008, was not useful
to our work and is not used because it doesn’t provide a
hierarchy of CWEs but instead uses the categories to group
CWEs. The view 1003 designed for vulnerability databases,
mentioned previously, is called ‘CWE Weaknesses for Sim-
plified Mapping of Published Vulnerabilities View’ and is the
core data structure upon which our work builds.

B. Common Vulnerabilities and Exposures

The set of software vulnerabilities used for this research
come from the Common Vulnerabilities and Exposures (CVE)
program, maintained by the MITRE corporation. ‘CVE is a
list of entries—each containing an identification number, a
description, and at least one public reference—for publicly
known cybersecurity vulnerabilities’ [4] [10].

C. Common Vulnerability Scoring System

The Common Vulnerability Scoring System ‘provides a
way to capture the principal characteristics of a vulnerability
and produce a numerical score reflecting its severity’ [11]. It
provides equations for calculating a vulnerability’s base score
(inherent risk outside of any particular environment), temporal
score (changing risk over time), and environmental score (risk
within a particular environment). We use the base score, which

is composed of two sub-scores that calculate the exploitability
and impact of a vulnerability. It is maintained by the Forum of
Incident Response and Security Teams (FIRST). The detailed
specification for CVSS version 3.1 is available at [5].

D. National Vulnerability Database

The National Vulnerability Database (NVD) is ‘the U.S.
government repository of standards based vulnerability man-
agement data’ [3]. It is maintained by the U.S. National
Institute of Standards and Technology. We use its scoring of
CVEs with CVSS scores and its mapping of the CVEs to view
1003 CWEs.

III. FOUNDATIONAL DATA STRUCTURES

This section describes how we generate the foundational
data structure used by our metrics to calculate the most
significant security relevant software flaw types. We generate
a directed acyclic graph (DAG) of CWEs that we will use to
propagate CWE analysis data between the CWEs.

A. View 1003 Graph

We begin with the set of CWEs in CWE view 1003
since that is the set that was adopted by the NVD (and
is the set identified by MITRE as most applicable to CVE
vulnerabilities). We then form a graph of the view 1003 nodes
through extracting the ‘ChildOf’ relationships in the CWE
view 1003 Extensible Markup Language (XML) file. Other
kinds of relationships are provided in the XML file but we
don’t use them because none of them definitively indicate
the parent child relationship needed to construct edges in our
graph (for example, ‘CanPrecede’). The result is a rooted tree1

with the root being CWE 1003, the nodes at distance one from
the root being classes, and the nodes at distance 2 being bases,
variants, and compounds. We remove the root as we are only
interested in the classes, bases, variants, and compounds. The
resulting DAG has 123 nodes and 87 edges, shown in Figure
1. On the left side are the 36 class nodes in blue. The majority
of class nodes have edges to bases, variants, or compounds,
but five do not. On the right side, the largest grouping of nodes
in a single column in purple represents the 82 bases. Moved
slightly to the right and in green are the 3 variants. Moved
even farther to the right in orange are the 2 compounds.

B. Direct Edge Augmentation

We next augment our view 1003 DAG with edges extracted
from the ‘ChildOf’ relationships specified within other CWE
view XML files. For this we use both the CWE research
and development concepts views (essentially alternate tax-
onomies). We can do this because for our metrics we aren’t
focused on a particular type of child-parent relationship, we
just want to know that a child-parent relationship definitively
exists between some pair of CWEs in the view 1003 set. This
analysis adds 19 edges, shown in green in Figure 2. Note that
we move three of the class nodes slightly left of the main

1A perfect tree structure is uncommon in weakness/vulnerability tax-
onomies. This encouraged us to explore possible missing relationships.



Fig. 1. CWE View 1003 (123 nodes, 87 edges)

Fig. 2. CWE View 1003 Nodes with Direct Edges from Non-1003 Views
(123 nodes, 19 edges)

column of class nodes to enhance visibility because they now
have edges to other classes.

C. Indirect Edge Augmentation

Lastly, we create a new DAG (to be used temporarily for
this section’s analysis) by unifying the set of nodes in views
1003, 1000, and 699 and then adding edges based on the
’ChildOf’ relationships specified in the three XML view files.
This produces a DAG with 834 CWEs and 1046 edges. Then
for each pair of nodes within view 1003, we determine if a

Fig. 3. CWE View 1003 Nodes with Edges Representing Paths from Non-
1003 Views (123 nodes, 29 edges)

Fig. 4. Composite Graph of View 1003 with Direct Edges and Edges
Representing Paths from Non-1003 Views (123 nodes, 135 edges)

Fig. 5. View 1003 Nodes Adorned with NVD Data (no propagation)

path exists connecting them that uses at least one node not
in view 1003. Each such discovered path can be used to add
an edge to our foundational data structure DAG. These 29
‘indirect’ edges (that really represent paths using nodes not
shown) can be seen in blue in Figure 3.

D. Composite Directed Acyclic Graph

We now put together our DAG representing the 1003 view
with the direct edge augmentation from Section III-B and the
indirect edge augmentation from Section III-C. The resulting
graph is shown in Figure 4. It has 123 nodes and 135 edges.

E. Node Adornment

The next step is to adorn the DAG with vulnerability
analysis data from the NVD. We take each CVE in NVD that
has one or more CWE mappings, and we label each relevant
CWE node in the DAG with a vector containing the CVE
name, the publish date, and the CVSS attribute information.
Figure 5 shows this adornment for the CVEs published in
2019. Note that the size of each node now represents the
number of vulnerability vectors mapped to that node.

F. Data Propagation

The edges within the DAG represent opportunities for
propagating vector data between CWEs. Parent CWEs receive




